Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Virus Evol ; 8(1): veac049, 2022.
Article in English | MEDLINE | ID: covidwho-1922334

ABSTRACT

Coronavirus infections cause diseases that range from mild to severe in mammals and birds. In this study, we detected coronavirus infections in 748 farmed wild animals of 23 species in Guangdong, southern China, by RT-PCR and metagenomic analysis. We identified four coronaviruses in these wild animals and analysed their evolutionary origins. Coronaviruses detected in Rhizomys sinensis were genetically grouped into canine and rodent coronaviruses, which were likely recombinants of canine and rodent coronaviruses. The coronavirus found in Phasianus colchicus was a recombinant pheasant coronavirus of turkey coronavirus and infectious bronchitis virus. The coronavirus in Paguma larvata had a high nucleotide identity (94.6-98.5 per cent) with a coronavirus of bottlenose dolphin (Tursiops truncates). These findings suggested that the wildlife coronaviruses may have experienced homologous recombination and/or crossed the species barrier, likely resulting in the emergence of new coronaviruses. It is necessary to reduce human-animal interactions by prohibiting the eating and raising of wild animals, which may contribute to preventing the emergence of the next coronavirus pandemic.

2.
Sci Data ; 9(1): 336, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1890208

ABSTRACT

Bats are considered reservoirs of many lethal zoonotic viruses and have been implicated in several outbreaks of emerging infectious diseases, such as SARS-CoV, MERS-CoV, and SARS-CoV-2. It is necessary to systematically derive the expression patterns of bat virus receptors and their regulatory features for future research into bat-borne viruses and the prediction and prevention of pandemics. Here, we performed single-nucleus RNA sequencing (snRNA-seq) and single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq) of major organ samples collected from Chinese horseshoe bats (Rhinolophus affinis) and systematically checked the expression pattern of bat-related virus receptors and chromatin accessibility across organs and cell types, providing a valuable dataset for studying the nature of infection among bat-borne viruses.


Subject(s)
COVID-19 , Chiroptera , Receptors, Virus , SARS-CoV-2 , Animals , Genome, Viral , Humans , Phylogeny , Single-Cell Analysis
3.
Gigascience ; 112022 05 18.
Article in English | MEDLINE | ID: covidwho-1853072

ABSTRACT

BACKGROUND: The masked palm civet (Paguma larvata) acts as an intermediate host of severe acute respiratory syndrome coronavirus (SARS-CoV), which caused SARS, and transfered this virus from bats to humans. Additionally, P. larvata has the potential to carry a variety of zoonotic viruses that may threaten human health. However, genome resources for P. larvata have not been reported to date. FINDINGS: A chromosome-level genome assembly of P. larvata was generated using PacBio sequencing, Illumina sequencing, and Hi-C technology. The genome assembly was 2.44 Gb in size, of which 95.32% could be grouped into 22 pseudochromosomes, with contig N50 and scaffold N50 values of 12.97 Mb and 111.81 Mb, respectively. A total of 21,582 protein-coding genes were predicted, and 95.20% of the predicted genes were functionally annotated. Phylogenetic analysis of 19 animal species confirmed the close genetic relationship between P. larvata and species belonging to the Felidae family. Gene family clustering revealed 119 unique, 243 significantly expanded, and 58 significantly contracted genes in the P. larvata genome. We identified 971 positively selected genes in P. larvata, and one known human viral receptor gene PDGFRA is positively selected in P. larvata, which is required for human cytomegalovirus infection. CONCLUSIONS: This high-quality genome assembly provides a valuable genomic resource for exploring virus-host interactions. It will also provide a reliable reference for studying the genetic bases of the morphologic characteristics, adaptive evolution, and evolutionary history of this species.


Subject(s)
Genome , Viverridae , Animals , Chromosomes , Genomics , Phylogeny , Viverridae/genetics
4.
mBio ; 13(3): e0046322, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1807326

ABSTRACT

Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) and SARS-CoV-2, the causative agents of SARS, which broke out in 2003, and coronavirus disease 2019 (COVID-2019), which broke out in 2019, probably originated in Rhinolophus sinicus and R. affinis, respectively. Rhinolophus bats are important hosts for coronaviruses. Many SARS-related coronaviruses (SARSr-CoVs) have been detected in bats from different areas of China; however, the diversity of bat SARSr-CoVs is increasing, and their transmission mechanisms have attracted much attention. Here, we report the findings of SARSr-CoVs in R. sinicus and R. affinis from South China from 2008 to 2021. The full-length genome sequences of the two novel SARSr-CoVs obtained from Guangdong shared 83 to 88% and 71 to 72% nucleotide identities with human SARS-CoV and SARS-CoV-2, respectively, while sharing high similarity with human SARS-CoV in hypervariable open reading frame 8 (ORF8). Significant recombination occurred between the two novel SARSr-CoVs. Phylogenetic analysis showed that the two novel bat SARSr-CoVs from Guangdong were more distant than the bat SARSr-CoVs from Yunnan to human SARS-CoV. We found that transmission in bats contributes more to virus diversity than time. Although our results of the sequence analysis of the receptor-binding motif (RBM) and the expression pattern of angiotensin-converting enzyme 2 (ACE2) inferred that these viruses could not directly infect humans, risks still exist after some unpredictable mutations. Thus, this study increased our understanding of the genetic diversity and transmission of SARSr-CoVs carried by bats in the field. IMPORTANCE Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 probably originated from the SARS-related coronaviruses (SARSr-CoVs) carried by Rhinolophus bats from Yunnan, China. Systematic investigations of the reservoir hosts carrying SARSr-CoVs in Guangdong and the reservoir distribution and transmission are urgently needed to prevent future outbreaks. Here, we detected SARSr-CoV in Rhinolophus bat samples from Guangdong in 2009 and 2021 and found that the transmission of SARSr-CoV from different host populations contributes more to increased virus diversity than time. Bat SARSr-CoVs in Guangdong had genetic diversity, and Guangdong was also the hot spot for SARSr-CoVs. We once again prove that R. sinicus plays an important role in the maintenance of the SARS-CoVs. Besides, the SARSr-CoVs are mainly transmitted through the intestines in bats, and these SARSr-CoVs found in Guangdong could not use human ACE2 (hACE2), but whether they can pass through intermediate hosts or directly infect humans requires further research. Our findings demonstrate the ability of SARSr-CoVs to spread across species.


Subject(s)
Chiroptera , Coronavirus , Angiotensin-Converting Enzyme 2 , Animals , China/epidemiology , Chiroptera/virology , Coronavirus/classification , Evolution, Molecular , Genome, Viral , Genomics , Humans , Phylogeny , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics
5.
PLoS Pathog ; 17(6): e1009664, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1308186

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1008421.].

6.
Front Microbiol ; 12: 657439, 2021.
Article in English | MEDLINE | ID: covidwho-1150698

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak has significantly affected international public health safety. It has been reported that the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, could originate from bats and utilize the Malayan pangolin (Manis javanica) as an intermediate host. To gain further insights into the coronaviruses carried by pangolins, we investigated the occurrence of Betacoronavirus (ß-CoV) infections in captive Malayan pangolins in the Guangdong province of China. We detected three ß-CoV-positive M. javanica individuals with a positive rate of 6.98% and also detected ß-CoV in two dead pangolins sampled in August 2019. The CoV carried by pangolins is a new ß-CoV, which is genetically related to SARS-CoV-2. Furthermore, the expression of angiotensin-converting enzyme 2 (ACE2) was detected in eight organs of pangolins, with the highest ACE2 mRNA levels in the kidney, suggesting that these organs could be at a risk of ß-CoV infection. These results enable us to better understand the status of ß-CoV carried by Malayan pangolins, while providing a theoretical basis for better pangolin protection and viral control.

SELECTION OF CITATIONS
SEARCH DETAIL